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Chapter 1

Introduction

Air pollution, particularly fine particulate matter (PM), is a leading environmental cause
of morbidity and premature mortality, having risen from fifth position in 1990 [46].
Deaths attributed to ambient PM have increased over the past 25 years [14], and exposure
to higher levels of atmospheric pollution is associated with increased mortality [8]. The
latest report on the

PM is classified based on its size, with particles smaller than 10 micrometers (PM10)
and 2.5 micrometers (PM2.5) causing the greatest concern due to their ability to pen-
etrate deep into the lungs and cause adverse health effects. PM constitutes a complex
mixture of solid particles and liquid droplets suspended in the air, with varying sizes and
chemical compositions. These particles can originate from natural sources such as dust
and pollen, as well as human activities including industrial emissions, vehicle exhaust,
and combustion of biomass and solid fuels.

Studies have shown that exposure to PM2.5 and PM10 is associated with premature
mortality from several diseases, including cardiovascular, respiratory, lung cancer, and
upper and lower respiratory tract infections [2], [27], [31]. Urban air pollution increases
the risk of pulmonary and systemic oxidative stress, hypoxemia, immunological modifica-
tions, atherosclerosis, and accelerated progression of cardiovascular diseases and chronic
obstructive pulmonary disease (COPD) [41], while epidemiological studies indicate that
PM exposure increases the risk of diabetes [73].

The severity of health consequences can vary depending on the concentration and
duration of exposure, as well as the individual’s health status and sensitivity to pollu-
tants. Some population groups, such as children, the elderly, and those with pre-existing
respiratory or cardiovascular diseases, are particularly vulnerable to the health effects of
air pollution [56].

Studies show a strong association between air pollution and hospitalizations for respi-
ratory diseases [65, 20, 42]. A cohort review of 175 articles summarizes that exposure to
air pollution increases the likelihood of developing various diseases including respiratory
diseases (asthma, chronic obstructive pulmonary disease (COPD), and lung cancer), car-
diovascular diseases (heart attacks, strokes, and hypertension), kidney, liver, and others
[1].
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1.1 Relevance and Motivation of the Topic

The growing concern regarding the impact of air pollution on public health necessitates
the development of predictive models to forecast acute morbidity levels based on air
quality data [43]. The latest report by the European Union (EU) on air quality assesses
the EU’s efforts to improve air quality as only ”partially effective” and specifically high-
lights that actions to reduce PM2.5 are insufficient. Figure 1.1 presents the results of
a study involving 432 cities in the EU, which analyzes the economic consequences of
the three main pollutants in European cities: particulate matter (PM), nitrogen dioxide,
and ozone [17]. The results indicate that PM is the primary cause (82.5%) of economic
damage resulting from illnesses and mortality due to air pollution. The study utilizes
the AIRQ+ modeling program, developed by the World Health Organization (WHO),
incorporating pollution levels and economic data for each city.

Figure 1.1: Contribution of the three main urban pollutants to the total morbidity and
mortality damage in 432 European cities

In light of these findings, there is a growing need for models that can examine acute
morbidity based on air quality data. Despite increasing awareness of the health risks
associated with air pollution, there is a need for an in-depth analysis of specific pollutants
and their effects on various health outcomes. Existing studies show links between air
pollution and respiratory diseases, cardiovascular diseases, adverse birth outcomes, and
even mental health issues. However, a comprehensive investigation of the extent and
mechanisms of these connections is still required to inform evidence-based interventions
and policies at the national and local levels.

The levels of PM exceed EU air quality standards in Bulgaria. The European Com-
mission won a case against Bulgaria in April 2017 due to excessive air pollution in several
cities. Bulgaria also leads in lost healthy life years due to dirty air. According to an in-
ternational report, our citizens lose 2.5 years of their lives due to air pollution, whereas
the EU average is 0.7 years. The main reasons for air quality surpassing the standards
are household heating, car traffic, and geographical factors that trap pollutants in the
atmosphere. The lack of solid research and statistical data on the health effects of PM
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pollution in Sofia undermines the city’s ability to develop evidence-based strategies to
mitigate its impact. Without accurate and detailed information, policymakers and pub-
lic health officials face significant challenges in implementing targeted interventions and
raising public awareness of the severity of the problem. Hence, there is an urgent need
for comprehensive research efforts and improved data collection methods to overcome
existing knowledge gaps and pave the way for informed decision-making in combating
PM pollution and improving health quality in Sofia.

1.2 Aim and objectives of the thesis

The aim of the dissertation is to study the impact of fine particulate matter (PM) on
acute illnesses in Sofia and to identify methods for prevention.

To achieve this aim, the following four tasks have been formulated:

• Investigate the relationship between fine particulate matter and health indicators
for acute morbidity in Sofia;

• Improve data from citizen air quality monitoring stations through calibration using
a machine learning-based two-step method;

• Develop a software tool for optimizing and evaluating cycling routes by character-
izing cyclists’ exposure to air pollution;

• Develop an IoT platform for aggregating and modeling air quality sensor data.

1.3 Research Methodology

The present dissertation employs a multidisciplinary approach, combining literature re-
view, quantitative analysis, and advanced statistical modeling. A systematic review of
existing studies has been conducted to summarize and synthesize the current evidence
on the relationship between air quality and health outcomes. Additionally, epidemiolog-
ical studies and data from health surveillance agencies have been analyzed to quantify
the relationship between specific pollutants and health consequences. Modern statistical
techniques, such as regression modeling and spatial analysis, have been utilized to inves-
tigate complex interactions and spatial patterns of air pollution and health outcomes.

The methodology used in this dissertation involves a systematic approach to studying
the impact of fine particulate matter (PM) on acute diseases in Sofia and developing
strategies to mitigate their consequences. The methodology includes data collection from
hospitals and monitoring stations, data analysis to establish correlations, calibration
of citizen laser stations, development of an IoT platform for data visualization, and
optimization of cycling routes.

Data collection includes admissions and hospitalizations from two major hospitals in
Sofia, emergency medical service registry data, and PM measurements from both official
monitoring stations of the Executive Environmental Agency (EEA) and citizen laser sta-
tions. Meteorological data, including humidity, atmospheric pressure, and temperature,
as well as traffic data and other relevant factors, are also collected.

Data analysis techniques are applied to investigate the relationship between PM levels
and acute diseases. Statistical analysis and comparisons of PM levels below and above
the World Health Organization (WHO) health standards are performed. The calibration
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process focuses on calibrating data from citizen laser stations using machine learning
models with controlled and uncontrolled methods. Reference data from EEA monitoring
stations are used for precise calibration, considering factors such as humidity, atmospheric
pressure, and temperature.

A model for optimizing cycling routes to minimize PM inhalation is developed. This
involves using a modified algorithm to find the shortest path and conducting real-field
tests to validate the methodology. A software system is developed to visualize the location
and indicators of monitoring stations on a geographical map. A new approach is applied
for aggregating, organizing, processing, modeling, and exchanging data in the IoT system.

During the research process, a wide range of literature was utilized to investigate the
problem. The newly developed methods and algorithms were published in [[?], [75], [76],
[77]]. The presented methodology allows for a comprehensive analysis of the impact of
fine particulate matter on acute illnesses, calibration of citizen laser stations through
machine learning and neural networks, and optimization of cycling routes considering
PM pollution. In line with the set objectives, algorithms and methodologies have been
developed to address specific problems. Software applications for each of the developed
algorithms have been created, and data visualization has been implemented through an
IoT platform. The platform and software are written in Python and utilize the Django
framework.

The results of this thesis will contribute to scientific knowledge, policy development
and public awareness, ultimately leading to improved air quality management and better
protection of human health.



Chapter 2

Link between PM Pollution
and Acute Health Indicators

The links between urban air pollution (UAP) and human health have been consistently
and clearly established by a number of researchers [66], [59], [39], with prominent groups
of diseases being cardiovascular [68], neurovascular [64], [10], and pulmonary [67]. Ac-
cording to recent refined modeling, it is estimated that there are nearly 9 million deaths
annually from UAP [53]. About 25% of premature deaths associated with UAP are
respiratory by presumption [5].

Significant literature from epidemiological studies suggests a link between acute mor-
bidity and exposure to PM2.5 air pollution [19]. Most of these data come from time-
series analyses [23], comparing variations in hospitalizations with average variations in
particulate matter [28]. UAP is responsible for respiratory tract inflammations [13], and
considering that the respiratory system is a common gateway of entry, minimizing res-
piratory tract exposure also minimizes cardiovascular problems [62]. Additionally, there
are studies that model pollution across multiple cities, such as the European Air Pol-
lution and Health: A European Approach (APHEA) [35] and the National Morbidity,
Mortality, and Air Pollution Study (NMMAPS) [60], both providing consistent evidence
of the health-air pollution link for multiple cities by covering large geographic areas.

The consequences of air pollution can be viewed as either an increased risk of illness or
injury to an individual or as an additional general risk to the well-being of the population
[22]. The goal of air quality management is to control or avoid the adverse effects of air
pollution on public health. Therefore, it is important to define such impacts that are
considered ”adverse” and distinguish them from those impacts that are not considered
adverse, thus concentrating protection efforts on pollutants that cause the most extreme
health impacts.

2.1 PM Standards: Analysis of EU Legislation and
WHO Guidelines

The EU legislative framework for PM levels in the air is based on the Ambient Air Quality
Directive (2008/50/EC) and is complemented by the National Emission Ceilings Directive
(2016/2284/EU). These regulations require Member States to meet air quality standards
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Table 2.1: Air Pollution: WHO Recommendations and EU Legislation (in µg/m3)

Air pollution standards
WHO EU

PM10 PM2.5 PM10 PM2.5

daily average 50 25 50 −
yearly average 20 10 40 25

according to specific threshold values derived from scientific assessments. Compliance is
monitored by the European Commission, and non-compliance can lead to legal actions
and fines. In comparison, WHO provides general air quality guidelines without legislative
obligations, leaving implementation to individual countries.

In the comparative analysis between EU legislation and WHO guidelines regarding
PM2.5 levels in the air, several key differences emerge (Table 2.1). While both the EU
and WHO recommend a daily average concentration threshold for PM10 of 50 µg/m3,
the EU and WHO significantly differ in their annual average recommendations, with
WHO standards being twice as stringent (20 µg/m3 compared to 40 µg/m3 from the
EU). For PM2.5, the EU does not have a daily average concentration threshold, and
there are significant differences in annual recommendations, with WHO advocating for
stricter limits. Furthermore, EU standards are region-specific, while WHO guidelines are
non-binding and universal, providing guidance to countries worldwide.

For the purposes of this dissertation, we will use WHO air quality guidelines as they
are recommended globally, have a daily limit for PM2.5, and are based solely on health
aspects, compared to the EU directive, which focuses on regional and national needs and
includes policy-economic and social aspects in the directives.

In its latest report, WHO pays special attention to PM pollution and considers ex-
posure to PM2.5 as the greatest air-related killer globally. About 80% of global deaths
attributable to PM2.5 exposure could be prevented if countries adhere to an annual
PM2.5 threshold value of 5 µg/m3. Achieving interim targets will also have significant
health benefits. In the case of PM2.5, achieving interim target 4 (10 µg/m3) would lead
to approximately a 48% reduction in the total number of deaths attributable to PM2.5
exposure.

2.2 Geographical Study Area

Sofia is the only European capital located in a basin and is characterized by high levels of
anthropogenic emissions and frequent occurrences of stagnant meteorological conditions.
The city has a population of 1.2 million people [47] and is situated in the Sofia Basin. The
area is recognized as problematic, particularly during winter when numerous exceedances
of the norms in European legislation for air pollution control occur.

For years, Sofia has been struggling with significant levels of air pollution, with PM
concentrations consistently exceeding the recommended limits set by WHO and the EU.
These elevated levels of PM pollution in the city pose a serious threat to the health
and well-being of its residents. Figure 2.2 shows the average concentration of PM2.5 in
the most polluted capitals in Europe in 2022. It can be seen that Sofia ranks among
the top positions in this ranking. Additionally, it is important to note that air quality
measurement data are insufficient for Sofia. Data for PM2.5 levels in the capital are
provided by only one station - AIS Hipodruma, which is insufficient for quality statistical
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analyses for a city the size and population of Sofia.

Figure 2.1: The average concentration of PM2.5 in the most polluted capitals in Europe
in 2022 (in µg/m3)

The combination of cold winters with subzero temperatures and the city’s location
predisposes it to temperature inversions that can last for several days to a week. Many
urban areas situated in valleys with poor air exchange encounter significant air pollution
problems, which are associated with local atmospheric conditions [57]. Strong inversions
and a lack of precipitation and/or wind are the main reasons for retaining pollutants in
the air, primarily during winter.

Historically, air quality indicators in Sofia during winter have been significantly worse
than those during summer. In addition to temperature inversions typical of colder con-
ditions, during the heating season, the burning of fossil fuels for domestic heating such
as wood and coal, and sometimes waste, significantly increase PM levels.

Therefore, this difference in air quality between summer and winter conditions will
serve as a good model for testing our hypothesis regarding a significant link between
pollution and health outcomes in Sofia. The literature abounds with models that can
be used to assess the hypothesis of pollution/health relationship. Specifically for Sofia,
no such studies have been conducted. Correlation between temperature and mortality
around Sofia is made using linear and nonlinear models [52]. Other studies examining
the genotoxicity of atmospheric air in 3 European cities, including Sofia, show that air
pollution in winter is 6 to 10 times higher compared to summer air [24].

2.3 Methodology of the Study

This is the first such study with real data from official and citizen sources of information
on particulate matter air pollution, comprehensive data from the emergency medical
service center (emergency aid), and data from two of the largest hospitals associated
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with access to emergency care in Sofia - UMBSM Pirogov and UMBSM Tokuda. The
results can be compared and contrasted with other international studies using local data.

The aim of this study is to determine which acute morbidity increases and by how
much on days when PM levels do not meet WHO guidelines, using time-series analysis.

The following four subtasks have been addressed: comparing air quality data with
health data obtained from hospitals and emergency care; comparative analysis and high-
lighting of key problem areas; testing the hypothesis that data from inexpensive sensors
can be useful in such epidemiological studies; identifying future prospects and summa-
rizing key areas where additional research is needed to improve the model’s effectiveness.

Air Pollution Data

First, we will identify which days, within the observed period, exceed the daily average
limits set by the WHO for PM concentrations. Then, we will compare the health data
for the days when air quality is within WHO guidelines to those that are not.

The air quality data in the form of hourly average concentrations of PM2.5 and PM10
are for the years 2018 and 2019 and represent independent series for each element from
official sensors provided by (a) the Executive Environment Agency (EEA) and (b) laser
stations from the luftdaten network (a global sensor network run by volunteers that
generates open environmental data).

The data is collected from 5 official monitoring sites (Druzhba, Nadezhda, Hipodruma,
Pavlovo, and Mladost). The method of beta attenuation is used for measuring PM10
and PM2.5 according to European Directive 2008/50/EC (Directive, 2008).

According to previous studies, the use of data from inexpensive laser stations aims
to enhance the potential benefits of traditional monitoring networks with additional geo-
graphic and temporal resolution of measurements [9]. Additionally, inexpensive stations
can complement official measuring devices and particularly address the limited data
quantity and station distribution [78]. It is believed that inexpensive sensors are suit-
able for many specific purposes, including expanding conversations with communities
and enhancing public awareness of air pollution issues [45]. In Sofia, at the time of the
study, there are several citizen networks of laser stations that complement, with addi-
tional geographic and temporal resolution of measurements, the official stations of the
EEA.

Health Data

Due to the voluntary nature of data provision, there are various temporal characteristics
and formats from different sources:

• Aggregated data on the activity of the Sofia Emergency Medical Center by diag-
noses from 01.01.2017 to 14.03.2019;

• Information on diagnostic activity from Tokuda Primary Care Center - from 02.01.2018
to 31.12.2018;

• Information on diagnostic activity from University Hospital ”St. Marina” - from
01.01.2018 to 31.05.2019;

• Information on hospitalized diagnoses from St. Marina Hospital - from 01.01.2018
to 31.12.2018.
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The study uses the International Classification of Diseases (ICD), specifically ICD-10,
to segment diseases and identify morbidity. ICD-10 is the 10th revision of the Interna-
tional Statistical Classification of Diseases and Related Health Problems published by
the World Health Organization (WHO), which is used up to the time of this study. It
contains codes for diseases, signs and symptoms, abnormal findings, complaints, social
circumstances, and external causes of injury or diseases [48], [49].

Methods

This study employs time series analysis with correlation methods to analyze air quality
and health data. The statistical methods in the study fall into two categories: parametric
and non-parametric. Parametric methods, such as Pearson’s correlation coefficient, are
preferred when the data are normally distributed or there is a sufficiently large volume
of measurements, allowing for the assumption that the data follow a normal distribution.
These methods are suitable for assessing the linear relationship between two continuous
variables.

The parametric Pearson correlation test (2.1) is used to compare the two sources of
air quality data. It provides a measure of the linear relationship between the two con-
tinuous variables (commonly referred to as just the correlation coefficient). Correlation
coefficients for each pair (x, y) are calculated for assessment, and the values of x and
y are replaced with their ranks, respectively. The results of the test are applied to the
correlation coefficient in the range of −1 to 1.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.1)

Non-parametric comparative methods, such as Spearman’s rho and the Mann–Whitney
U test, are used when the data are not normally distributed or there is uncertainty about
whether they follow a normal distribution. These methods are suitable for assessing the
rank correlation between variables or for comparing differences between two groups with-
out requiring specific assessment of the linear relationship. The choice in this disserta-
tion is as follows: descriptive analysis for individual variation series; correlation analysis
(non-parametric - Spearman’s rho) between pairs of variables; between-group comparison
(non-parametric Mann–Whitney U test) of mean values.

The model developed in this study aims to explore the relationship between air quality
indicators and health outcomes based on data on fine particulate matter and hospital
admissions and Emergency Medical Service (EMS) visits. At the advice of medical
professionals and health data analysts, we incorporate lagged effects of 1, 2, and 3 days.
This is because health effects typically require time to manifest after exposure to air
pollutants [34]. By doing so, our analysis of hospital admissions and EMS records will
not only reveal which disease cases undergo changes due to variations in air quality but
also demonstrate how these effects evolve over time. Figure 3.1 illustrates the exposure-
response method, where the dose is the exposure multiplied by time.

2.4 Results

In a recent study, it is suggested that low-cost sensors can provide rough details about
air quality but may not be suitable for applications requiring high accuracy [32]. In
this chapter, we test the hypothesis that low-cost air quality sensors from Luftdaten
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can be a valuable addition to the official monitoring stations operated by the EEA. By
cleaning and summarizing the data, we aim to identify correlations that can provide
insights into certain coarse details. During comparison, we filtered out data when the
air humidity exceeded 70%. While these conditions do not necessarily imply inaccurate
data, the manufacturer does not guarantee the predicted accuracy of 10% under such
circumstances.

The results of daily concentrations for PM10 and PM2.5 are summarized in Table
?? The average daily concentration of PM2.5 is 11.7 g/m3 with a range from 2 to 136
g/m3. During the study period, 13.2% of the daily concentrations of either PM10 or
PM2.5 did not meet the WHO air quality guidelines (50 g/m3 for PM10 and 25 g/m3
for PM2.5). There were some gaps in the data from the EEA for several hours to several
days (due to power supply issues, malfunctions, maintenance), and some of the sources
for hospital admissions had missing data during weekends (Saturday, Sunday, official
holidays). Therefore, an analysis of the gaps was conducted to exclude the possibility of
bias.

Table 2.2: Daily concentration of PM10 and PM2.5, divided into working and non-
working days

Day from the week N
PM10 Working days 522 34.17 27.5 5 336 20
PM10 Non-working days 230 37.1 26 6 290 18
PM2.5 Working days 522 11.15 9 2 104 4
PM2.5 Non-working days 230 12.93 8 2 113 3

The correlations observed in the data for hospitalized patients with more severe con-
ditions are summarized in Tables 2.3 and 2.4. An increase (compared to background
levels) in respiratory and pulmonary diseases is noted from the 1st to the 3rd day fol-
lowing an exceedance of PM10 by 120%, as well as heart failure during the same period
by 19%. Exceedances of PM2.5 are associated with a 59% increase in the frequency of
pulmonary embolism on days 2 and 3.

The results show an increase in emergency medical service contacts by 11% on days
with exceedances of PM10 and 13.5% on days with exceedances of PM2.5, for a period
of at least 3 days. The average increase (compared to background levels) in neuroses
on day 2 following an exceedance of PM10 is 1%, for myocardial infarctions on day 3
following an exceedance it’s 8%, for strokes immediately following an exceedance it’s 9%,
continuing until day 3 post-exceedance. The same applies to hypertensive conditions,
which increase by 5% immediately around the exceedance and up to the third day after
the event.

From the analyzed data, a significant correlation is observed between cardiovascular
and cerebrovascular diseases, fully coinciding with the rapid increase in risk at low levels

Table 2.3: Comparison of nonparametric data from hospitalized patients on days with
exceedances of WHO standards for PM10

Morbidity ICD-10
no lag 1-day lag 2-days lag 3-days lag

Z p Z p Z p Z p

Resp. system C30-C39 -1,504 0,133 -2,211 0,027 -2,870 0,004 -2,862 0,004

Heart attack I50 -1,729 0,084 -3,656 0,001 -3,475 0,001 -2,821 0,005
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Table 2.4: Comparison of non-parametric data from hospitalized patients in severe con-
ditions on days with exceedances of WHO standards for PM2.5

Morbidity ICD-10
no lag 1-day lag 2-days lag 3-days lag

Z p Z p Z p Z p

Resp. system C30-C39 -0,361 0,718 -1,270 0,204 -1,265 0,206 -2,119 0,034

Pulm. embolism I26 -1,601 0,109 -2,302 0,021 -2,894 0,004 -1,852 0,064

Heart attack I50 -1,586 0,113 -2,831 0,005 -3,195 0,001 -2,799 0,005

Table 2.5: Comparison of non-parametric data from outpatient examinations in hospitals
with WHO standards for mean daily concentrations of PM10

Morbidity ICD-10
no lag 1-day lag 2-days lag 3-days lag

Z p Z p Z p Z p

Respiratory system C30-C39 −1.515 0.130 −2.950 0.003 −2.941 0.003 −2.423 0.015

Ear diseases H65,H81 −0.754 0.451 −0.976 0.329 −1.580 0.114 −2.322 0.020

Myocardial infarct. I20-I25 −0.244 0.807 −1.393 0.164 −1.876 0.061 −2.104 0.035

Heart deficiency I50 −0.771 0.440 −2.840 0.005 −2.559 0.010 −2.972 0.003

Upper respir. tract J00-J06 −3.218 0.001 −3.507 0.000 −3.910 0.000 −4.605 0.000

Bacterial pneum. J13-J18 −3.171 0.002 −3.395 0.001 −2.556 0.011 −3.683 0.000

Acute bronchiolitis J20-J21 −3.096 0.002 −2.848 0.004 −1.606 0.108 −1.588 0.112

Lower resp. tract J40-J47 −3.988 0.000 −4.049 0.000 −2.842 0.004 −3.481 0.001

Skin infections L00-L08 −2.552 0.011 −1.379 0.168 −0.267 0.789 −0.489 0.625

Mycoplasma pneum. J20.0 −2.330 0.020 −2.327 0.020 −0.430 0.667 −0.431 0.667

Acute bronchitis J20.9 −2.496 0.013 −1.449 0.147 −0.039 0.969 −1.292 0.197

Asthma, allergic J45.0 −2.426 0.015 −2.808 0.005 −3.577 0.000 −3.643 0.000

Angina I20.8 −1.971 0.049 −0.763 0.445 −0.773 0.440 −0.674 0.500

of PM2.5 pollution fractions, consistent with similar findings in other studies [74], [63],
[69].

But the highest correlation is observed in acute upper respiratory tract infections,
increasing by 47%, and notably pneumonia by 60%. Chronic obstructive pulmonary
disease (COPD) increases by 36% after one day. Regarding asthma, records of allergic
asthma increase more on days with increased pollution compared to non-allergic asthma.
Ambulatory hospital visits for mild conditions that do not require hospitalization logically
show an increased presence of respiratory diagnoses (Table 2.5).

2.5 Conclusion

The analyses and tests conducted have proven that acute illness increases on days when
the concentrations of fine particulate matter exceed the WHO air quality standards. This
was established by comparing hospital admissions and emergency cases on days with and
without exceedances of PM standards in Sofia.

Respiratory diseases show higher and faster development when air pollution exceeds
healthy limits. Other diseases related to air pollution, such as cardiovascular and cere-
brovascular diseases, also increase.

This is among the first studies of its kind in Bulgaria and could be valuable for
healthcare professionals, environmental scientists, and policymakers.

The exposure-effect method is complex, and achieving precise measurements is chal-
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lenging, even in exposure chambers. However, with the help of epidemiological research
methods and population statistics, it becomes evident that air pollution contributes to
expected changes in certain disease indicators. In conclusion, similar to data from pub-
lished studies in cities in Europe, America, and Asia, elevated levels of air pollution are
associated with and lead to higher levels of diagnosed diseases. With few exceptions,
short-term health effects are measured using averaged concentrations of air pollution
across the entire city as exposure indicators. This can lead to misclassification of expo-
sure and thus bias.

The use of extensive data from multiple low-cost laser sensors can effectively enrich the
information provided by the high-precision official stations of the Executive Environment
Agency, which, besides being few in number, often have missing data for certain periods.
This approach leads to improved measurements of the links between health and air
pollution by providing a more comprehensive exposure to pollutants.



Chapter 3

Calibrating Low Cost Sensors
through Machine Learning

To understand how we can improve the data obtained from laser sensor stations for
PM, we need to measure their error under real conditions. For this purpose, we place
laser sensor stations in close proximity to the stations of the Ministry of Environment and
Water (MOEW) for PM2.5 measurement. We compare their data and create a calibration
model based on machine learning, which enhances the data from the inexpensive laser
stations.

Traditional air quality monitoring stations, equipped with complex and expensive
instruments, are the primary source of data for assessing air pollution levels. However,
their high cost, limited spatial coverage, and logistical challenges have led to the emer-
gence of low-cost air quality sensors as an alternative monitoring solution. These sensors
offer the potential to expand air quality monitoring networks by providing data with
higher resolution and enabling more localized assessments. The inexpensive laser sensors
operate on the principle of light scattering, detecting and quantifying the concentration
of PM in the air. They are much more cost-effective than traditional monitoring stations,
but their measured data lack reliability due to their sensitivity to temperature and rel-
ative humidity. These weaknesses are particularly evident when dealing with high levels
of PM in combination with high relative humidity - then the measured PM2.5 values are
artificially elevated. Calibration is crucial to ensuring the accuracy and consistency of
the measurements from the inexpensive laser sensors.

In this chapter, we present a new two-step model for calibrating inexpensive laser
sensors for air quality monitoring, using supervised and unsupervised machine learning
(ML) techniques. Our proposed calibration method aims to improve the accuracy of
individual laser sensors by utilizing data from official air quality monitoring stations as
references. The first step of our calibration model involves supervised ML, where we
train a predictive model using data collected from both inexpensive laser sensors and
reference air quality monitoring stations. The supervised ML algorithm learns the re-
lationship between the sensor readings and the corresponding reference measurements,
enabling calibration of the sensor data. By leveraging the comprehensive and accurate
data from the reference stations, we can overcome the discrepancy between the readings
of the inexpensive sensors and the true measurements. The second step of our model
employs unsupervised ML techniques to further enhance the calibration process. Un-

15
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supervised learning algorithms, such as clustering and anomaly detection, help identify
and correct deviations and inconsistencies in the sensor data. By detecting and rectifying
irregularities, we can improve the overall accuracy and reliability of the inexpensive laser
sensors.

3.1 Air quality monitoring

This study utilizes five air quality monitoring stations employing traditional measure-
ment methods as a reference. To calculate PM10 concentrations, automatic monitoring
stations from the Executive Environment Agency (EEA) are used. These stations uti-
lize gravimetric methods for collecting PM samples on filters and weighing the filters to
determine the mass of collected PM. These methods are similar to beta attenuation but
do not rely on radiation detection. Gravimetric methods are highly accurate but require
specialized equipment and trained personnel for sample collection and analysis. The
monitoring stations used in the study are located in Sofia, specifically in the districts of
Mladost, Druzhba, Nadezhda, Hipodruma, and Krasno Selo. Only one of these stations
measures PM2.5, so PM2.5 is not used as a reference in this study.

The PM sensor used in this study is the NovaFitness SDS011 laser particle sensor.
These types of sensors operate based on the principle of laser diffraction. The laser
illuminates captured particles, causing scattered light waves to be detected at specific
angles as air passes through the sensor’s photosensitive area. A particle size continuum is
created by classifying these pulse signals into different particle size intervals to measure
the mass concentration of particles [37].

This study utilized the wireless sensor network (WSN) by Luftdaten. It is a citizen-
driven network comprising 300 stationary sensors covering Sofia. Each sensor is installed
in a plastic tube that can be mounted on walls, balconies, streetlight poles, and other
structures. Specific guidelines have been developed to achieve the best representation
of particulate matter emissions in the city with the fewest possible sensors. The WSN
employs fixed sensors mounted in a 1 km grid to ensure that the majority of the city
center is covered with appropriate density.

3.2 Data Calibration Model

This section describes the two-step calibration model for inexpensive laser sensors, which
utilizes a combination of supervised and unsupervised machine learning techniques. This
model uses data from measurements from inexpensive sensors and standard air monitor-
ing stations as a reference tool.

Other researchers have shown that machine learning correction models of sensor data
yield good results when trained against a reference instrument [15].

3.2.1 Introduction to Supervised Machine Learning

Supervised machine learning is a type of artificial intelligence (AI) where algorithms are
trained on a labeled dataset and used to make predictions or decisions based on this
training. The goal of supervised learning is to find the relationship between the input
features of a dataset and their corresponding outcomes and use this relationship to make
predictions for new, unseen data.
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Supervised learning algorithms are trained on a labeled dataset, which contains both
input features and their corresponding outputs. These algorithms use this training data
to learn the relationship between the input features and the outputs, and then use this
relationship to make predictions for new data. The accuracy of the predictions depends
on the quality of the training data and the choice of algorithm.

3.2.2 Methodology of the Study

The methodology used to calibrate the concentration of PM10 in Sofia involves several
steps:

1. Data cleaning: Data from citizen stations are further refined by limiting PM10
concentration levels based on official hourly measurements. Stations with less than
a predetermined threshold (90 days) are also removed from the dataset;

2. Deviation correction: The study begins by correcting the data from citizen mea-
surements obtained from luftdaten. These measurements are compared with the
official measurement stations of the Executive Environment Agency (IAOS) to re-
move any instrumental deviations;

3. Data preparation: Distances between station pairs are calculated, and groups of
stations within a certain distance are created. For each pair, differences in mea-
surements are calculated, and stations with high differences in measurements are
removed from the dataset;

4. Analysis of factors and characteristics: A exploratory data analysis is conducted
using IAOS’s official data. The significance of meteorological variables and engi-
neering characteristics influencing air pollution levels is examined;

5. Calibration model: A two-step machine learning model has been developed, incor-
porating additional factors from meteorological parameters and topographic data.
The characteristics used for calibration include temperature, humidity, pressure,
PM10 concentration from the previous day, wind speed, and various dummy vari-
ables. More information on the two-step machine learning method will be presented
in this chapter;

6. Evaluation and validation: The accuracy of predictive models is assessed using
quadratic error. The models are compared with each other, as well as with the
initial data before calibration, showing a significant improvement in accuracy.

3.2.3 Data and Model

The model utilizes 5 standard air quality monitoring stations located in Sofia and 5 low-
cost laser sensors with the specifications shown in the previous section. The small size
of the low-cost laser stations allows them to be placed directly adjacent to the official
stations of the IAOS.

The input variables consist of relative humidity (RH), atmospheric pressure (AP),
and temperature (temp). The parameter we are calibrating the data for is PM10. These
input data are obtained from both standard instruments and low-cost sensors. Since the
temporal resolution of the sensor differs from that of the conventional instrument, the
hourly average value is used for calculation and assessment.
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As temperature, atmospheric pressure, and humidity affect the values of many air
quality sensors, measurements of these variables are often recorded on-site and used in
the calibration model, as done by other researchers [30], [79].

3.2.4 Brief Description of the Five ML Techniques Used

Here we briefly describe the five supervised machine learning techniques used in the first
step of the calibration model. These techniques are: linear regression (LR), decision tree
(DT), gradient boosted decision tree (GBDT), random forest (RF), and artificial neural
network (ANN).

Linear regression is a simple and widely used supervised learning algorithm that mod-
els the relationship between a dependent variable and one or more independent variables.
Decision tree is a model that uses a tree-like structure of decisions and their potential
consequences, including the consequences of random events [58]. GBDT is an iterative
decision tree algorithm composed of multiple decision trees, where the decisions of all
trees are summed to obtain the final answer [38]. RF is a hybrid tree-based predic-
tor where each tree is based on the values of a random variable chosen independently
and with the same distribution for all trees in the forest [7]. Artificial neural networks
are mathematical models that simulate the behavior of neurons and are automatically
adjusted by backpropagation of errors [21].

3.2.5

3.2.6 Model Design

Figure 3.1 demonstrates the modeling of the two-step method for calibrating data from
air monitoring stations. In the first stage of the model, 5 supervised machine learning
techniques are used and their results are evaluated. The most effective of these five
methods is then used again in the second step, which includes anomaly detection to
clean deviations. At each step, we evaluate whether this improves the model’s results
and by how much.

Anomaly detection and removal is the second step in the model and it can improve
the data, but it is not guaranteed. This is a method for detecting unusual objects or
events in datasets that are beyond the ordinary [61]. The anomaly detector is used to
remove deviations only from the training dataset. Since this is unsupervised learning,
an evaluation has been made with the same ANN settings before and after cleaning the
dataset to determine if unsupervised learning is suitable for this dataset.

The process of training the model is divided into two stages: training and testing.
The raw data is randomly divided into two datasets, with 80% for training and 20%
for testing. The model is first trained using the training data and then its output is
evaluated by the testing dataset.

Anomaly detection and removal is the second step in the model and it can improve
the data, but it is not guaranteed. This is a method for detecting unusual objects or
events in datasets that are beyond the ordinary [61]. The anomaly detector is used to
remove deviations only from the training dataset. Since this is unsupervised learning,
an evaluation has been made with the same ANN settings before and after cleaning the
dataset to determine if unsupervised learning is suitable for this dataset.

The process of training the model is divided into two stages: training and testing.
The raw data is randomly divided into two datasets, with 80% for training and 20%
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Figure 3.1: Two-step calibration model using artificial neural network and anomaly de-
tection

for testing. The model is first trained using the training data and then its output is
evaluated by the testing dataset.

3.3 Application of the Model on Wireless Sensor Net-
work

After calibrating the 5 sensors located precisely next to the standard instruments, we
apply the same model to other sensors from the Luftdaten network. In the analysis,
data from measurements from 13 other sensors are added, which are in proximity to 500
meters to the regulatory stations. The purpose of this correction is to predict the ”real”
concentration of PM10 on-site by reproducing the PM10 concentration as accurately as
possible.

For the purposes of this study, we take data from inexpensive sensors that are installed
and operated by citizens. Therefore, there are missing data. The percentage of missing
data among the inexpensive sensors is 9.4

The aforementioned five supervised ML techniques are used in the first step of the
analysis: LR, DT, GBDT, RF models, and ANN. Their effectiveness is then investigated.
To evaluate the models, the coefficient of determination for the mean squared error R2

is used as an indicator of effectiveness in the selection and evaluation of our models.
Regarding variable selection, we only chose variables in the validation stage that are
used to improve the findings.

The wireless sensor network consists of sensors mounted at different heights. To assess
the measurement of pressure from the inexpensive sensors and identify any deviations,
we use the barometric formula and the Pearson correlation coefficient. Both values from
inexpensive PM sensors and reference instruments are used as input data. The mounting
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Table 3.1: Results from supervised ML models

MODEL TYPE MAE MSR R2

LR: 11,19 288,12 0,77
DT: 8,89 170,03 0,86
GBDT: 8,68 145,22 0,89
RF: 7,96 125,57 0,90
ANN: 6,27 83,90 0,94

Table 3.2: The importance of the parameters based on RF.

Content Parameter
RH: 46,62%
Temperature: 30,71%
Atmospheric Pressure: 22,67%

height for each inexpensive sensor is known and added to the dataset. Therefore, we
can also accurately identify the height difference between each sensor and analyze the
pressure measurements.

3.4 Results and Evaluation

In Table 3.1, the results of the five supervised ML techniques are presented. For a better
assessment of the inexpensive sensors, along with the coefficient of determination (R-
squared), the mean absolute error (MAE) and the mean squared error (MSE) have been
calculated.

The average mean squared error between the particulate matter sensors and the
standard instruments before calibration is 0.62. The linear regression model showed the
worst result after calibration with an average R2 value of 0.77.

The best correlation for PM10 was obtained from the artificial neural network model.
The average R2 value is 0.94 (PM10), which aligns with findings from previous studies
[55], [54].

For long-term comparison, the inexpensive sensor and the conventional instrument
were placed at the same location, which is a common approach for sensor evaluation in
previous studies [25], [30], [33].

3.4.1 Assessment of Results for Relative Humidity

Table 3.2 shows that RH, followed by temperature, are considered the most significant
factors influencing the performance of the particulate matter sensor. Previous studies
have demonstrated that high RH acts as a catalyst for inducing hygroscopic growth
of particles and altering their optical properties, leading to significant disturbances for
laser-based PM sensors [40]. This is corroborated in our RF and ANN models for PM10
values, where RH emerged with the highest importance.

Unfortunately, standard devices cannot be compared for the PM2.5/PM10 ratio since,
as mentioned above, out of the five standard devices, only one measures PM2.5.
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Table 3.3: Comparison of One-Step and Two-Step Models

MODEL TYPE MAE MSE R2

ANN Model: 6.27 83.90 0.94
ANN Model with anomaly detection: 5.62 (↑5.16%) 65.37 (↑14.69%) 0.95

Figure 3.2: Artificial Neural Network Model with Anomaly Detection

3.4.2 Results from the Calibration Model

Table 3.2 presents the statistical results from testing each model, where the mean absolute
error (MAE), mean squared error (MSE), and R2 are determined

The results from the remaining five individual models show that the ANN model
performed the best. The RF model showed slightly worse results. The R2 for PM10
increased from 0.62 to 0.9 and 0.94 respectively for RF and ANN. The ANN model
performed best out of the five models, slightly better than the RF model, which is why
it was chosen to be used for the second step - anomaly detection. Therefore, the use
of unsupervised learning in this study is considered useful and improves the result of
calibration.

In conclusion, the final ANN model (ANN with anomaly detection) has the best
calibration result, with the smallest error and the best correlation, indicating that the
proposed two-step model is more accurate than the single model in calibrating the low
cost sensor model.

3.5 Conclusion

The effectiveness of particulate matter sensors was measured by comparing standard
instruments using the wireless sensor network. A two-step process was developed for
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calibrating the stationary sensors, and the results of the model were evaluated.
The results from the two-step model are encouraging. The R2 for fixed PM10 sensors

increased from 0.62 to 0.95. The ANN model had the strongest impact among the five
independent models, followed by the RF model, while the LR model was ineffective.

Anomaly detectors can serve as an uncontrolled alternative to classifiers in an unbal-
anced dataset. They identify undesirable sensor behavior and remove it from the dataset.
Anomaly detection improved the final results in this study.

Relative humidity proved to be the most important factor for calibration results. This
was expected, as high humidity is the condition under which cheap sensors exhibit the
most data quality weaknesses. This was confirmed in this study, with humidity having a
higher impact factor than temperature and atmospheric pressure.

Atmospheric pressure values from standard stations and sensors were evaluated using
calculations with the barometric formula. The correlation was strong, indicating that
cheap sensors can be considered a good source for modeling air pollution in vertical
planning in further studies.

This type of calibration, using controlled and uncontrolled ML, demonstrates the
potential to improve results from cheap sensors. Furthermore, it can also be used to assess
deviations. Additional studies can be conducted to determine whether these deviations
are due to faulty sensors, improperly installed ones, or they are functioning well but there
are hyperlocal changes in atmospheric conditions and air quality.



Chapter 4

Development of a software
model for bicycle route
selection with respect to PM
pollution

Most of the specialized and segregated bicycle lanes in cities are located near busy traffic
arteries, which can pose a significant health risk to cyclists due to increased pollutant
intake associated with higher ventilation rates and physical activity levels [80], [26], and
high levels of physical activity [6], [51]. Researchers have focused on assessing actual
exposure levels of cyclists along predetermined routes using personal samplers [16] or
deriving personal exposure from street-level pollution measurements using mobile lab-
oratories or stationary air monitoring stations [50]. Many studies also attempt to link
specific physiological reactions to cyclists’ exposure to air pollution and find evidence
that short-term exposure can lead to adverse health effects [70]. One study even found
that cyclists absorb a greater portion of fine particles PM2.5 and black carbon than
drivers of motorized transport [29].

4.1 Formulation of the Problem

Here, the issue of the lack of quantitative determination of exposure of urban cyclists
to PM in areas with poor air quality is addressed. In the city of Sofia, known for its
high levels of air pollution, there is a lack of a comprehensive method for assessing and
quantitatively determining the exposure levels of cyclists. This knowledge gap hinders
the development of effective strategies to minimize exposure and provide healthier cycling
routes.

To address this problem, we propose the development and evaluation of a software
model that utilizes a modified route determination method reflecting the expected in-
halation of PM by the cyclist, providing a healthier route. By incorporating data on air
quality, pollutant concentrations, and traffic patterns into the software model, we can
quantify cyclists’ exposure to PM and provide recommendations for routes with minimal
exposure. This innovative approach aims to fill the existing gap in quantitative exposure

23
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determination and provide a practical tool for urban cyclists in polluted cities like Sofia.
The software implements the decision-making system outlined in this chapter. It is

deployed in a cloud infrastructure, and Python, Django, and GraphQL (for the database)
were used for its development. It combines GIS data with traffic and air quality data to
apply the modified k − SPwLO algorithm to find the most suitable bicycle route and
display it on the OpenStreet map.

The input parameters include: PM measurements from fixed sensors; PM measure-
ments from mobile sensors; traffic data; temperature and humidity from stationary sen-
sors; start and end points of the journey; terrain elevation; heart rate.

4.2 Research study

This study examines the creation of a software tool aimed at selecting the optimal cycling
route that minimizes the inhalation dose of PM for a cyclist traveling from point A to
point B.

The inhalation dose (ID) of air pollutants is a variable that depends on pollutant
concentrations, time, and ventilation rate (VR) [min]. We calculate the inhalation dose
by incorporating PM exposure for each cyclist with biomarkers such as heart rate and
the time required to travel each route into the model. The next subsection will provide
more detailed information on the calculation methods used in the model.

To calculate the cyclist’s ventilation rate (VR) (in l/min), we use the equation from
the model [18], which is based on the heart rate (HR) [min] (Equation 4.1).

V R = 0, 00070724×HR2,17008537 (4.1)

To determine the quantities of particulate matter affecting cyclists, we use Equation
4.2 [18] to calculate the inhalation dose of PM for each segment:

inh = PMconc × V R× time (4.2)

where PMinh (µg) is the mass of pollutants that enter the cyclists’ respiratory tract during
travel (in both directions); PMconc (µg/m3) is the average exposure to pollutants.

The formulas for calculating the inhalation dose (Equations 4.1 and 4.2) lead to the
following hypothesis: If we want to create a tool that reduces the inhalation dose of PM,
it should select a route that is fast and short. The shorter the time, the smaller the
PMinh; it requires less effort. HR increases during uphill climbs and high speeds. Look
for routes with low elevation gain. Pass through areas with lower concentrations of PM;
avoid heavily trafficked roads. Prefer smaller streets and park alleys.

The decision-making system is calibrated using data on HR, IR, cycling speed, PM
measurements from mobile and stationary sensors, and traffic data. The software inte-
grates traffic and air quality data from multiple sources with specific bicycle route data,
including exact location, duration of ride, and elevation gain.

To calculate the least inhalation of polluted air, this software first needs to compute
the shortest path in linear time [4], [71]. Additionally, it should present options that are
longer than the shortest path but have different desired characteristics, such as lower
vehicle traffic and minimal elevation gain. The k-Shortest Paths problem is a simple
method for computing alternative routes [44].

Therefore, in this study, we decided to use an alternative routing, specifically k-
Shortest Paths with Limited Overlap (k-SPwLO), which was introduced earlier in [11].
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The k-SPwLO algorithm searches for paths that are: as short as possible; sufficiently
different from each other.

Despite the method’s better performance compared to the baseline solution, which
lists paths in increasing order of their length, OnePass is not useful even for moderately
sized road networks [12]. For this purpose, we use MultiPass - a more precise method
that, by adding a second pruning criterion, extends and improves OnePass. MultiPass
traverses the network k-1 times, but evaluates and expands only the most promising
paths, unlike OnePass, which traverses the road network once and expands only those
paths that meet a similarity criterion. Pruning is performed for each path that cannot
lead to a solution.

Let P be a set of routes in the road network G connecting nodes s and t. A path p’
(s → t) is called an ”alternative” in P when p’ is sufficiently different from every path p
P. Formally, the overlap coefficient between p’ and p determines how similar they are:

Sim(p′, p) =

∑
(nx,ny)∈p′∩pwxy

l(p)
, (4.3)

where p′∩p denotes the set of edges that are common to p′ and p. Given the similarity
threshold θ, the route p′ is an alternative to the set P if Sim(p′, p) ≤ θ.

Given a source node s and a target node t, the k-SPwLO query provides a collection
of k routes from s to t, arranged in increasing order of length, such that: the shortest
route p′(s → t) is always included; all k routes are pairwise dissimilar with respect to
the similarity threshold θ; all k routes are as short as possible.

The final result of the k-SPwLO-modified function is a single path. This path rep-
resents the shortest path from the source node to the target node, taking into account
certain constraints such as avoiding major boulevards and locations with high levels of
PM2.5 or heavy traffic. The algorithm traverses through the neighbors of each node,
considering their relevant characteristics based on the specified criteria, and selects the
path with the lowest cost. If the algorithm successfully reaches the target node, it returns
this single path.

4.2.1 Measurements from fixed sensors

The software utilizes an aggregation tool that extracts air quality data from both stan-
dard environmental monitoring instruments by IAOS and inexpensive sensor networks
such as Luftdaten, Smog, Openaqi, and many others. It receives, records, cleans, and
calibrates air quality data from fixed inexpensive sensors.

To mitigate the aforementioned limitations of fixed inexpensive sensors, we calibrate
the data obtained from them. This is done by examining data from both environmental
monitoring stations and the Luftdaten network of inexpensive sensors. To calibrate the
data from the inexpensive sensors and enhance their reliability, we employ a two-step
calibration method [75], which utilizes artificial neural networks and anomaly detection.

4.2.2 Measurement of PM exposure using mobile sensors

Portable low-cost pollution sensing devices are environmental monitoring devices that
people can carry or wear while going about their daily activities. Since they detect
pollution levels directly and in real-time, they can enable healthcare providers and re-
searchers to monitor exposure at an individual level and empower citizens to manage their
personal pollution exposure beyond what regulatory monitoring stations can achieve [72].
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The particle sensor in the Airbeam2 - PMS 7003 is the seventh generation in the
PMSx003 series developed by Plantower. The PMS7003 is a digital and universal particle
concentration sensor used to measure the quantity of suspended particles in the air and
output the results through a digital interface. It can be used with various instruments
to provide accurate real-time concentration data. It provides a solid particle counting
efficiency of 98% and can operate within a temperature range of -10 to 60 degrees Celsius.

4.2.3 PM Measurements and Calibration of the Decision-Making
Model

As previously discussed, the software is programmed to search for a route where: the
shortest path p′(s → t) is always included; the routes are pairwise dissimilar with respect
to the similarity threshold θ; the routes are as short as possible.

The computational model relies on the previously mentioned formulas for calculating
ventilation and inhalation rates, which are used to develop the weights for the search
algorithm.

Additionally, the algorithm is further enhanced through route assessment, combining
traffic data with air quality data from mobile and stationary sensors. The integration aids
in more accurately forecasting the computation of the optimal route. Stationary sensors
positioned near bicycle routes establish the baseline concentrations of PM pollutants in
the area - PMbaseline. Meanwhile, traffic data provides information to estimate the PM
concentrations from vehicles and transportation - PMtraffic. The expected exposure
to PM pollutants PMexp along the bicycle route is determined by combining these two
variables.

PMexp = PMbaseline + PMtrafic (4.4)

As the bicycle route approaches main roads, the influence of traffic pollution on over-
all PM concentrations increases. Therefore, the variable PMtraffic increases. The time
of travel also affects this variable - passing during rush hours and near heavily congested
streets and boulevards increases PM concentrations, as noted further in the chapter. Ac-
tual PM concentrations are estimated using measurements from mobile sensors. Mobile
sensors provide highly accurate measurements as they are attached to the bicycle itself,
transmit PM measurements every minute via a mobile phone, and reflect ultra-local pol-
lution, such as being directly behind a bus or large truck. Later in the field studies, this
assessment process is demonstrated.

The characteristics for evaluating bicycle routes are highly dependent on the location
and features of the specific area. This is why we conducted a very detailed field study,
examining two bicycle routes described in the next section.

4.2.4 Field Tests and Investigated Routes

In this section, the software model is evaluated through real-world field testing in Sofia,
examining two bicycle routes. Both investigated routes start from the Vasil Levski Na-
tional Stadium and end at ”Petite Kiosque.” These two locations are situated in the
center of Sofia and experience active bicycle traffic.

The two selected routes were chosen based on the following criteria: they have the
same starting and ending points; one route is suggested by the software while the other
follows dedicated bicycle lanes; both routes are actively used by cyclists; both routes
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pass near stationary sensors from the Luftdaten network; and both routes are deemed
safe for regular cyclists.

On the following images, you can see the two paths used for evaluation: Segment A
(Fig.4.1), which is the optimized bicycle route proposed by the software tool, passing
through the shortest path via small central streets and parks; while Segment B (Fig.4.2)
utilizes the developed bicycle infrastructure (mainly cycling near major road arteries
with heavy traffic), is longer in distance, and is proposed by the navigation software as
it follows dedicated bicycle lanes.

Figure 4.1: Section A - suggested by our software looking for the smallest inhalation dose

Figure 4.2: Section B - offered by most navigation software, which follows a designated
cycle lane

Field tests were conducted with 10 participants in the study. The mobile equipment
was attached to the front part of each bicycle, allowing the sampling lines to capture
pollutants without obstruction; it was also secured from below to reduce vibrations.
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We selected 10 individuals (aged 27-41) through contact with the local cycling com-
munity (8 males and 2 females). Before participating in the study, participants completed
a pre-screening questionnaire. Exclusion criteria from the group included respiratory (in-
cluding asthma), cardiovascular, or other chronic diseases, as well as tobacco smoking
(current or recent). Only individuals who commuted daily by bicycle in Sofia were in-
cluded. These factors were used to minimize the risk of injury due to unfamiliarity with
Sofia’s streets, lack of cycling experience, and adverse health consequences. Addition-
ally, participants were asked to abstain from alcohol and caffeine for 48 hours prior to
the tests.

Circular journeys were conducted on weekdays during rush hours (HT) (8:00-9:30
a.m.) and during off-peak hours (LT) (10:30 a.m.-12:00 p.m.) and on non-working days
(NWD): weekends and holidays. The results from the three scenarios are evaluated
separately in the next section. Field tests were conducted in April and May when the
weather was moderate, and air pollution from domestic heating did not influence the data.
Therefore, increases in particulate matter concentrations were mainly due to traffic. The
ten participants performed circular journeys on both segments during HT, LT, and NWD.

4.3 Results and discussion

4.3.1 PM1 and PM2.5 concentrations from mobile measurements

In Table 4.1, the minimum, maximum, and mean (median) values of PM10 and PM2.5
concentrations for the two surveyed segments during working days under heavy traffic
(HT) are shown. The concentrations of ultrafine particles with a diameter below 1 micron
(PM10) ranged between 8 and 24 µg/m3 (average 11 µg/m3) for segment A and between
8 and 41 µg/m3 (average 14 µg/m3) for segment B. The concentrations of fine particles
below 2.5 microns (PM2.5) ranged between 12 and 29 µg/m3 (average 15 µg/m3) for
segment A and between 12 and 45 µg/m3 (average 19 µg/m3) for segment B.

Table 4.1: PM1 and PM2.5 concentrations from mobile measurements on weekdays dur-
ing heavy traffic (HT)

1 2,5
min max mean min max mean

Stretch 8 24 11 12 29 15
Stretch B 8 41 14 12 45 19

In Table 4.2, the concentrations of PM10 and PM2.5 for segments A and B during
working days under light traffic (LT) are presented. Measurements from segment A show
lower concentration levels for both PM10 and PM2.5. The concentrations of ultrafine
particles with a diameter below 1 micron (PM10) ranged between 6 and 19 µg/m3 (av-
erage 10 µg/m3) for segment A and between 5 and 34 µg/m3 (average 12 µg/m3) for
segment B. The concentrations of fine particles below 2.5 microns (PM2.5) ranged be-
tween 10 and 24 µg/m3 (average 13 µg/m3) for segment A and between 9 and 38 µg/m3
(average 15 µg/m3) for segment B.

Table 4.3 illustrates the minimum, maximum, and median values of PM10 and PM2.5
concentrations for both surveyed segments during weekends and holidays.
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Table 4.2: Concentrations of PM1 and PM2.5 from mobile measurements on weekdays
with low traffic (LT)

1 2,5
min max mean min max mean

Stretch 6 19 10 10 24 13
Stretch B 5 34 12 9 38 15

Measurements for segment A show almost identical low concentration levels for PM10
and PM2.5. PM10 concentrations range between 3 and 7 µg/m3 (average 4 µg/m3)
for segment A and between 3 and 8 µg/m3 (average 4 µg/m3) for segment B. PM2.5
concentrations range between 4 and 11 µg/m3 (average 7 µg/m3) for segment A and
between 5 and 11 µg/m3 (average 7 µg/m3) for segment B.

Table 4.3: Concentrations of PM1 and PM2.5 from mobile measurements on non-working
days

1 2,5
min max mean min max mean

Stretch 3 7 4 4 11 7
Stretch B 3 8 4 5 11 7

Despite the fact that the dedicated bicycle route is mostly exposed, the high volume
of cars, buses, and trucks in this corridor is the main reason for the elevated pollution
concentrations, as increased traffic raises the levels of PM. As a result, PM2.5 measure-
ments are almost identical during weekends but with nearly 20% higher concentrations
between the two routes during weekdays.

4.3.2 Ventilation Rate

To measure the ventilation rate (VR) during breathing, we conducted measurements of
heart rate (HR), oxygen saturation (SpO2), and respiratory rate (RR) for each partic-
ipant in the project. The average value of each parameter has low variability, and the
final results for VR are presented in Table 4.4. No differences are observed in these three
factors depending on whether the route is traversed on a workday or a non-workday, as
they are not directly influenced by traffic or different levels of short-term air pollution
exposure.

Table 4.4: Averaged indicators from
field measurements

Stretch Stretch B
VR (L/min) 10,14 11,06
HR (beats/min) 82,30 85,66
Denivelation (m) 3 15
Speed (km/h) 14,3 14,7

Despite having the same starting and ending points, the distances are different, with
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Segment A being shorter - 3.8 km compared to 4.4 km for Segment B, and it is faster -
15:52 minutes compared to 18:04 minutes for Segment B. The time taken to traverse both
segments remains relatively constant on workdays and non-workdays. The specialized
bike route had longer and straighter corridors with fewer intersections and crossings,
leading to higher maximum and average speeds. Additionally, Segment B has a greater
elevation change - 15 m compared to 3 m in Segment A. All these data result in increased
cyclist speeds in Segment B - 11.06 km/h compared to 10.14 km/h for Segment A.

Table 4.5 shows the results of the inhalation dose of cyclists for PM10 and PM2.5.
They are calculated based on the average exposure value of PM during the ride measured
by mobile sensors, along with the time taken for the ride and the ventilation rate for each
cyclist.

Table 4.5: Inhalation Dose of PM10 and PM2.5 during the Circuits
Period Pollutant Stretch A(optimized) Stretch B(bike lanes)
Heavy traffic PM 1inh 29.74 46.45 (↑56%)

PM2.5inh 40.56 63.04 (↑55%)
Low traffic PM 1inh 27,04 39,82 (↑47%)

PM2.5inh 35.15 49.77 (↑42%)
Non-working days PM1inh 10.82 13.27 (↑23%)

PM2.5inh 18.93 23.23 (↑23%)

Despite having the same starting and ending points, Segment B shows an increased
inhalation dose of particulate matter (PM) due to the longer duration of the route,
requiring more effort, and exposing the cyclist to higher concentrations of PM due to
vehicle exhaust gases. Even on non-workdays, when PM concentrations are similar across
both routes, Segment B exhibits higher inhalation doses due to the longer duration and
higher ventilation rate (due to higher elevation change and higher average speed).

Measurements for SpO2 and RR do not show any significant short-term health effects.
This was expected since the study participants, selected for safety reasons, were non-
smokers without chronic conditions and were regular cyclists. However, this does not
necessarily mean that people with chronic conditions and sensitivity to air pollution may
not experience symptoms or irritations, as observed in some studies.

4.3.3 Visualization of Bicycle Routes by Incorporating Data from
Stationary Sensors

We will utilize the network of inexpensive stationary sensors from Luftdaten to demon-
strate the technology for our fixed sensors in our software. Figure 4.3 displays the concen-
trations for Segment B during LT, where measurements from stationary sensors within
200 m or closer to the route are applied. The black-colored line indicates that in this
part of the route, there is no fixed sensor closer than 200 m, while the green and yellow
lines represent the concentrations measured by the fixed sensors nearby. Green color is
used for PM2.5 concentration values between 0 and 12, while yellow indicates PM2.5
values between 12 and 35. These color categories are inspired by the EPA Air Quality
Index and are the same for visualizing Aircasting routes measured with portable sensors.
Thanks to the dense network of inexpensive sensors in Sofia, 5 fixed sensors are used for
Segment A, and 6 sensors are used for Segment B, as they meet the selection criteria.

The software has continuous access to particulate matter (PM) concentrations from
fixed sensors, while traffic data can dynamically change the input values for the decision-
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Figure 4.3: Biking Route with Exposure from Fixed Sensors

making mechanism. The tool also has the functionality to display the same route in
different time frames and accordingly show different air pollution concentrations.

4.3.4 Refinement of the model and evaluation of data from mo-
bile and stationary sensors

The average values for PM2.5 concentrations from stationary sensors, located near the
surveyed routes (within 200 meters), are compared with PM2.5 measurements from mo-
bile sensors, as shown in Table 4.6 below. We find a strong correlation between the
average values of PM2.5fixed and the minimum values for PM2.5mobile, partly prov-
ing the assumption that the concentration from nearby fixed sensors can be used as an
output for calculating the overall PM concentration estimate.

Data from the fixed sensors closely match the minimum concentrations along the
route. Typically, this part of the route has negligible traffic, and its value often ap-
proximates PMbaseline, measured by the fixed sensors. Meanwhile, the maximum PM
concentrations along the bicycle route are observed when passing by significant sources
of pollution such as trucks, vehicles with old diesel engines, mopeds, or queues of cars
waiting at traffic lights. As expected, the difference between the minimum and maximum
PM concentrations is more significant during HT.

4.4 Conclusion

This chapter presents the development of a software tool that optimizes bicycle routes
based on algorithms predicting the least harmful air pollutants. The algorithm utilizes
a modified implementation of the k-shortest path with limited overlap method. It relies
on experimental data and equations that calculate the total inhaled pollutant dose for
cyclists. Additionally, the study evaluates two bicycle routes: Route A, suggested by the
newly developed software, which traverses small streets in Sofia, and Route B, suggested
by navigation apps, which follows a dedicated bicycle lane.
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Table 4.6: PM2.5 concentrations from fixed sensors near the route and mobile measure-
ments

2, 5fixed 2, 5mobile

Period Route mean min max mean
WD-HT Stretch A 10 12 29 15

Stretch B 10 12 45 19
WD-LT Stretch A 8 10 24 13

Stretch B 8 9 38 15
NWD Stretch A 4 4 11 7

Stretch B 4 5 11 7

In the field test, ten cyclists make circular trips on both routes over three periods:
(1) during heavy traffic, (2) during light traffic on workdays, and (3) on non-workdays.
Based on the data collected during the study from a mobile sensor, cyclists’ exposure
and potential inhalation doses of PM2.5 and PM10 along both routes are calculated.

Exposure concentrations along dedicated bicycle lanes were found to be higher than
exposure levels along the optimal route, especially on workdays. Even when average
concentrations were nearly equal, the inhalation dose for cyclists was always higher on the
bicycle lane route, as it took longer in terms of time and distance, had higher elevation
differences, and required more intense cycling. Choosing the optimized bicycle route
reduced the inhalation dose of PM2.5 by 23% on non-workdays and up to 55% during
heavy traffic on workdays. Results during workdays show an additional health risk for
cyclists using the investigated bicycle lanes due to pollutants directly associated with
traffic. Exposure to PM concentrations in the investigated bicycle lanes was closely
linked to vehicular traffic, as the study was not conducted during the heating season.

The findings of this study build upon previous observations [3], which suggest that
redesigning streets for low-speed multimodal traffic without barriers is a more sustainable
and pragmatic approach than constructing bicycle infrastructure on heavily trafficked
roadways. There is a significant difference between studies conducted during light traffic
and heavy traffic conditions. Bicycle lanes without physical barriers between the bicycle
route and the road have higher exposure levels, a conclusion also noted in another study
[36]. Our findings contribute to a better understanding of Sofia’s air pollution issues,
particularly related to vehicular traffic.



Chapter 5

Software System for
Visualization of Air Pollution

In order to utilize all the research described up to this point and to convey information
on how air pollution affects health in an accessible way, it is necessary to develop a
comprehensive software system that allows for the collection, processing, and modeling
of data.

The architecture of the software is modular, defining how different components in-
teract, how data is processed, and how results are visualized. Figure 5.1 illustrates its
appearance. The software architecture consists of the following components: API con-
nection module; Central cloud repository; Data processing module; Forecasting module;
Module for measuring PM concentration along a specified route; Data visualization and
dissemination.

Figure 5.1: Software architecture

33
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Ensuring the accuracy and reliability of our decision-making system is paramount to
the success of our research. To achieve this, our software relies on a series of input pa-
rameters. These parameters include: measurements of PM concentration from stationary
laser sensors; measurements of PM concentration from official monitoring stations; mea-
surements of PM concentration from portable sensors; data on temperature and humidity
from stationary sensors; traffic data.

The inclusion of these parameters is contingent upon their significance for assessing
air quality and their potential impact on human health. Each parameter contributes to
a comprehensive understanding of air quality, enabling our decision-making system to
make informed forecasts and assessments.

To achieve this, we are committed to creating a modern air quality monitoring system
that collects data from various sources.

The output data include: real-time air quality data by location, geographic radius,
or city; station locations with their values on geographic maps; air quality forecast;
calibrated data from specific stations; selection of the most suitable route based on PM
pollution and traffic.

5.1 Data Collection Module

Access to data from national and civilian air quality monitoring networks is facilitated
through public APIs (such as Luftdaten, aqicn, openaq, etc.). The built system peri-
odically connects to these APIs over a specified period. These data provide us with a
comprehensive view of air quality in a given area.

– Air Pollutants: We receive information about various air pollutants, including
particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), sulfur dioxide
(SO2), and carbon monoxide (CO). Each pollutant contributes to the overall
air quality index.

– Traffic Data: Real-time updates on road traffic help us understand how vehi-
cle activity affects air quality. This data source helps us identify congestion
points and emissions.

– Temperature: Knowledge of temperature is essential as it affects the disper-
sion and concentration of pollutants in the air. Higher pollution levels are
often observed during the winter heating season and temperature inversions.

– Humidity: Humidity levels influence air quality by affecting the concentration
and dispersion of particles and pollutants in the air. High humidity can
improve air quality, while low humidity can exacerbate issues. Humidity is
also an important factor when comparing and processing pollution data from
different measurement devices. Laser measuring stations show higher error
levels when humidity is high.

– Air Pressure: Air pressure data helps in forecasting meteorological conditions
that may impact air quality. This is an important factor in understanding
atmospheric stability and modeling air pollution forecasts.
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5.2 Cloud Data Storage Module

The system for monitoring air quality and its impact on human health is based on
an integrated approach that involves collecting and processing diverse data. We
gather data on air pollutants, road traffic, temperature, humidity, and pressure
from various sources and centralize and store them in the cloud infrastructure.
This approach ensures scalability and flexibility, allowing us to meet the growing
demands of the system.

By collecting data on air pollutants, road traffic, temperature, humidity, and pres-
sure, we can provide a comprehensive view of air quality. This approach not only
enhances our understanding of air quality but also enables us to make informed
decisions and take timely actions to protect public health and the environment.
Traffic data is integrated as it provides information on vehicle emissions and their
impact on air quality. By combining traffic data with air quality measurements,
we can identify areas with high pollution due to congestion and develop strategies
to reduce pollution.

The data is updated in real-time, allowing us to provide users with up-to-date
information on air quality. Integrating data from various sources makes analysis
and information extraction easier and more efficient, providing a unified platform
for data processing. Users with different privileges have easy access to information
from anywhere with an internet connection.

5.3 Module Analysis, Forecasting, and Air Pollu-
tion Measurement

The Data Processing Module is the heart of the system and performs several key
functions. Figure 5.2 provides a comprehensive architectural overview of the air
quality monitoring system. It visually outlines the complex data flow between the
data processing, forecasting, and pollution measurement modules. The diagram
clearly demonstrates how data is processed, used for forecasting, and measured in
real-time. Additionally, it emphasizes the integration of geographic context through
GIS data, facilitating a holistic understanding of the system’s functionalities.

First and foremost, this module provides basic data preprocessing, including clean-
ing and structuring. This means that data obtained from various sources and APIs
undergo analysis and processing to ensure their accuracy and integrity. Cleaning
involves removing invalid or corrupted data, while structuring them in a suitable
format enables easier navigation and analysis of the information. It is important
to note that the module includes a two-step machine learning-based calibration
method, which enhances the accuracy of the data and prepares it for analysis.

5.4 Used technologies

In this section, we will focus on the reason for choosing Python and the related
libraries for data modeling within our software system for measuring air quality.
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Figure 5.2: Architectural diagram showing the flow of data between the data processing
modules.

We will provide information on how Python and these libraries integrate with the
system and what key functionalities they provide.

Python is used as the primary programming language for developing the system,
providing flexibility and power in data processing. Its readability and rich set of
libraries make it a suitable choice for data processing and analysis.

Using Python and modeling libraries brings several significant advantages to our
software system. Python provides a convenient environment for developing and
testing models, allowing for rapid prototyping and efficient data modeling.

Python provides an extensive and flexible ecosystem of libraries that are crucial
tools for data processing, including data obtained from financial and physical mea-
surements. These libraries, such as NumPy, pandas, and SciPy, offer powerful
tools for analysis, manipulation, and processing of numerical data. For instance,
NumPy provides capabilities for efficient operations on multidimensional arrays
and matrices, which are crucial when working with data obtained from physical
measurements where the data structure is complex and requires fast and efficient
traversal.

Django provides a powerful and robust framework for developing web applications.
Built on top of Python, Django offers comprehensive tools for rapid and convenient
development of web-based applications. An important aspect of this toolkit is the
built-in data processing and the capability for storing and processing information
in databases.

Combining Django with data processing tools like NumPy and pandas can be ex-
tremely useful for developing web applications that require data manipulation and
analysis. Integrating these tools helps create powerful web-based applications that
work with data from various sources and provide valuable analytical capabilities.

Additionally, Django provides capabilities for building public APIs, which is ex-
tremely useful for creating web applications that provide access to data through



5.5. EXAMPLE OF USING THE SOFTWARE INFRASTRUCTURE 37

standardized interfaces. This facilitates sharing and integrating data between dif-
ferent systems and applications.

GraphQL is a powerful and flexible query language for working with data, used to
interact with various data sources including databases, web services, and others. By
employing this approach to data management, we achieve significant flexibility and
control over data queries, allowing for precise extraction of only the data required
for a specific task or application.

GraphQL not only simplifies data handling but also facilitates efficient interaction
between the client and server sides of the application by providing optimized queries
and responses. This abstract and flexible approach to data management, combined
with data processing tools like NumPy and pandas, can be crucial in creating
applications that require complex and dynamic data queries.

Using GraphQL has helped us build applications that not only provide user satis-
faction but also facilitate data extraction and analysis, which is crucial in today’s
world of information and data.

REST (Representational State Transfer) is an architectural style for creating web
services and APIs that provides a secure and efficient way to communicate between
different systems and applications. REST APIs offer a lightweight and straight-
forward method for accessing resources through common HTTP requests, such as
GET (for retrieving data), POST (for creating new data), PUT (for updating data),
and DELETE (for deleting data).

REST APIs provide an easy way to access and manage data through standardized
and intuitive requests, making it suitable for integration into various applications
and platforms. This structured and transparent approach to data handling ensures
flexibility and scalability of applications.

The cloud repository serves as a central storage for data coming from various
sources. This includes information on pollutant concentrations, meteorological
data, traffic, and many other factors affecting air quality. The cloud infrastruc-
ture provides secure storage and management of vast amounts of data.

Utilizing cloud infrastructure is crucial for processing large volumes of data and
delivering services that require flexibility and scalability. Cloud platforms such as
Amazon Web Services (AWS) and Microsoft Azure are used, providing resources
and services for storing, processing, and analyzing data on a global scale. Combined
with Python, Django, GraphQL, and REST APIs, along with cloud infrastructure,
we provide tools for analyzing air quality and its impact on health.

5.5 Example of Using the Software Infrastructure:
The AirLief Mobile Application

At the core of our software’s functionality lies its ability to integrate data from GIS,
measurements of air quality from stationary monitoring stations, and traffic data.
This integration is achieved through advanced data merging techniques, allowing
us to gain a comprehensive understanding of air quality on various spatial and
temporal scales. GIS data provides essential geographic context, enabling us to
precisely determine air quality measurements. By overlaying air quality and traffic
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data onto GIS layers, we can identify spatial patterns, hotspots, and correlations
that would otherwise go unnoticed. This integration is crucial for our research as
it allows us to assess the impact of traffic patterns and geographic characteristics
on air quality levels.

The software has the capability to visualize air quality information on popular
mapping platforms such as Google Maps and OpenStreetMap. This feature trans-
forms raw data into a visually interpretable format, facilitating the dissemination
of important information to a wide audience. We can analyze variations in air
quality over time, identifying trends and anomalies to serve as the basis for our
research findings. This temporal analysis provides insight into how air quality
changes throughout different times of the day, seasons, or under certain meteoro-
logical conditions.

Integrating these diverse data sources into a cohesive framework enables us to draw
significant conclusions about air quality and its interaction with the environment,
contributing to the depth and comprehensiveness of our research.

AirLief is a mobile air quality application developed for iOS and Android platforms.
It is a free, open-access application that shows users the air pollution levels around
them based on their geolocation. AirLief retrieves data from the software system
using the API created for data communication outside the system.

Air quality and atmospheric data are distributed from the software system to the
mobile application through purpose-built infrastructure endpoints. To facilitate
data transmission to our system, location information (GPS coordinates), geo-
graphic radius, or city inputs are entered, and real-time air quality data corre-
sponding to the query is outputted. Three infrastructure endpoints have been
created for the AirLief application:

– Nearest Point Measurements (input data: GPS coordinates): This endpoint
allows users to receive results from the nearest monitoring station located near
the specified GPS coordinates. It provides information about the current air
quality at a specific location.

– Location-Based Measurements (input data: GPS coordinates, radius in km):
This endpoint allows users to obtain the arithmetic mean values of measure-
ments from all monitoring stations within a radius of specified kilometers
around the given GPS coordinates. This gives a generalized overview of air
quality in a particular area.

– City-Based Measurements (input data: city name): This endpoint enables
users to obtain the arithmetic mean values of measurements from all moni-
toring stations in a specific city or populated place. It provides information
about air quality within the boundaries of the specified city or populated
place.

These infrastructure endpoints provide flexibility and convenience in extracting
air pollution data, contributing to the extensive functionality of the air quality
monitoring and management software system. They are presented to users in the
mobile application in an easy and accessible manner.
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The AirLief app retrieves and delivers air pollution information in an accessible
way for over 100 countries from around 15,000 stations. The application itself is
used in 70 countries by over 70,000 users, as shown in Figure 5.3. It consists of a
dashboard that presents the current state of the air in an accessible and easy-to-
understand manner; a map displaying values from stationary stations; the option
to add favorite stations, and personalized tips for protection against air pollution.
Figure 5.4 illustrates how the mobile application transforms raw data obtained from
the software system into an Air Quality Index (AQI). The index, which directly
correlates with the impact of air pollution on the human body, includes not only PM
concentrations but also other pollutants such as ozone pollution, nitrogen dioxide,
and others.

Figure 5.3: AirLief App is one of the applications developed from the software system,
displaying real-time air pollution data from stationary sensors.
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Figure 5.4: AirLief App - the mobile application that translates raw data into under-
standable Air Quality Index (AQI).



Chapter 6

Conclusion

The dissertation defines a goal and four tasks for achieving it. Initially, a detailed
analysis was conducted on the data regarding air pollution and acute illnesses from
two hospitals and emergency services in Sofia. The benefits of combining pollution
data from official monitoring stations and laser sensor stations (low-cost IoT devices
deployed by citizens) have been identified.

The dissertation develops and implements a solution for calibrating particulate
matter (PM) data from laser stations using machine learning, which corrects errors
and anomalies by comparing with data from a standardized station. Table 3.3
shows the improvement in laser station results, where the use of a combination of
artificial neural networks and anomaly detection methods increases the R-squared
value from 0.62 to 0.95 after calibration.

A route selection method based on PM pollution was developed, using a customized
approach. Table 4.5 shows that in a field test with 10 cyclists, the routes generated
by the software resulted in 67% better outcomes compared to other bicycle route-
finding solutions.

All these tasks and solutions were developed into a scalable software system with a
modular structure for collecting and processing data from various stations and IoT
devices. This system facilitates effective integration with diverse hardware devices
for measuring PM, utilizing different communication protocols. Practical results
from the system’s operation are visualized in a user interface, serving as a point
of interaction between users and the system. The system is capable of processing
and calibrating data as well as generating air pollution maps, and it is utilized
in different projects, such as a mobile application accessed by thousands of users
weekly.

The scientific and practical research presented in this dissertation provides the
following contributions:

6.1 Scientific and Applied Contributions

1. A statistical correlation analysis was performed between air pollution and
hospital and emergency admissions, identifying important cause-and-effect
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relationships.

2. An algorithm for calibrating laser sensors was developed using a two-step
method with artificial neural networks and anomaly detection. This inno-
vative method supports more reliable and accurate measurements from laser
sensors and has the potential to be used in a wide range of sensor applications.

3. An algorithm was created to evaluate the influence of humidity, altitude, and
atmospheric pressure on air pollution data from laser sensors, allowing a more
comprehensive and accurate understanding of the factors affecting air quality.
It can also be applied in vertical planning.

4. An algorithm was developed to calculate the optimal cycling route based on
PM concentration. This routing method promotes a healthy lifestyle and
supports sustainable urban mobility.

6.2 Practical Contributions

1. Software for calibrating PM data from laser sensors was developed, using
reference data from official monitoring stations. This software enables air
quality control organizations to use more reliable data for decision-making
and pollution management.

2. A software solution was developed to account for the influence of humidity,
altitude, and atmospheric pressure, improving PM data from laser sensors.
This software can be used by urban authorities and health organizations to
monitor and manage air quality in real-time.

3. A software tool for finding the optimal cycling route based on PM inhalation
was created. This software can be useful for individual cyclists and city
infrastructures that promote cycling.

4. An IoT platform for aggregating and analyzing sensor data on air quality was
developed. This platform supports automation and facilitates data integra-
tion from various sources, enhancing the efficiency and accuracy of air quality
monitoring. In addition to meteorological data, it integrates traffic and GIS
data. The platform visualizes maps, complemented by measurements from
air quality sensors and real-time traffic data.

In light of the research and results presented in this dissertation, we can conclude
that this project provides important scientific and practical contributions, influenc-
ing the development and improvement of air pollution measurement systems and
related technologies.
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